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ABSTRACT: Since GPS technology is a relatively new measuring technique, methods for achieving
redundant measurements have not been clearly established and universally accepted. In particular,
dependent or “trivial” baselines are a recurrent source of disagreement. Some GPS users consider
them redundant measurements, and some do not. In order to evaluate the issues involved, an
examination of the fundamentals of the GPS measuring process is made by analogy to conven-
tional surveying methods. What constitutes the actual measurements in GPS phase differencing
methods is shown as well as how these actual measurements relate to the GPS vectors that are usu-
ally considered as measurements in network adjustment. It is explained why trivial baselines are
not redundant measurements and consequently should not be included in GPS networks because
they distort the network statistics and make the results look better than they actually are. A consid-
eration of the actual measurements in the process rather than the vectors, is necessary to ensure

adequate redundancy in a GPS network.

Overview

lthough GPS surveying has been with us
Afor about ten years, there is still disagree-
ment about dependent baselines and re-
dundancy. Confidence in the results of any survey
depends upon having a sufficient number of re-
dundant measurements. The concept of redun-
dancy is clear enough. Redundancy is achieved in
any system of measurements by having more than
the minimum number of measurements to com-
pletely define the mathematical model. Redun-
dancy can be achieved with phase-differencing
methods by positioning the same point from more
than one observing session. One measurement
session defines the relative positions of all the
points of that session. A second measurement
session that includes any point of the first session
provides a different set of measurements to the
point. The mathematical model defining the
point becomes “over determined” and redun-
dancy is achieved. This sounds simple enough, yet
there is still much disagreement, in particular
about dependent or “trivial” baselines. Trivial
baselines appear to be a redundant measurement
occurring within one observing session. Some GPS
users consider them redundant measurements,
while others do not. (Consider Figure 1.)
With receivers simultaneously occupying all of
the points of Figure 1, three baseline vectors can
be computed. The points appear to be over
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determined, with one of the baselines providing a
redundant measurement. The “redundant” base-
line is a dependent vector from a solution of si-
multaneous equations, so it is called a dependent
or “wrivial” baseline. The three baselines form a
closed figure. If a loop is computed with the vec-
tors, there is a small misclosure that resembles the
misclosure of a conventional traverse. Since each
baseline is computed separately from the others,
there appears to be some redundancy. This
“common-sense” approach tells us that there is
redundancy; however, a mathematical examina-
tion of the process clearly shows that there is
none. Why the disparity? Since the problem is a
particularly vexing one that fundamentally affects
the entire process of surveying with GPS, it war-
rants a thorough examination.

Part of the difficulty stems from the intangible
nature of GPS measurements. What is actually being
measured is not obvious. On the other hand, it is
much easier to see what is actually being measured
with conventional methods. Horizontal and vertical
angles are measured. A tape is pulled between two
points to measure a slope distance. Even with today’s
electronic instruments, exactly what is being meas-
ured remains clear. Anyone with a high-school back-
ground in trigonometry and geometry can intuitively
see that these measurements could be used to com-
pute coordinate values. The specifics require a cer-
tain amount of training, but it is obvious that it can
be done. GPS technology is more nebulous, however.
Radio receivers placed on widely separated points
receive signals from unseen satellites. Invisible bytes
of data are “dumped” into a computer. A set of
manufacturer’s procedures are followed with the
software and out come some apparent
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Figure 1. Independent and dependent (trivial) baselines.

“measurements.” Some software packages output
coordinate differences, others output the coordinates
themselves. Either way, the process has a quasi-
magical aura to it. There is no obvious source for
these answers which are assumed to be measure-
ments. Moreover, if these are not measurements,
what are they, and where are the “real”
measurements?

In order to clearly understand the relationship
between dependent baselines and redundancy, we
must first examine what is actually being meas-
ured and what is simply being computed. It is
useful to view the process in two phases. First, the
coordinates of the points are computed by an
algebraic process similar to distance-distance
intersections. Second, the baselines are computed.
The distances involved in the first step are from
the different satellites to all the points occupied
simultaneously during any session. The baseline
vectors are computed as inverses between the
points. The fundamental measurements of the
process are the distances from the different satel-
lites to all the points occupied simultaneously
during the session. Yet even though these are the
fundamental measurements of the process, they
are not usually entered as observations into a
network adjustment. Instead, the coordinate dif-
ferences between the points (inverses) are consid-
ered as observations themselves. So a GPS
network is usually put together from computed
inverses rather than from actual observations.
There is nothing wrong with this practice—it is
commonly done as a mathematical convenience in
vertical networks. However, it contributes to the
confusion about trivial baselines and redundancy.
The effects are more obvious when a comparison
is made with a similar process which uses conven-
tional surveying methods.

Comparison to
Conventional Methods

Suppose we have only two horizontal control
points, and want to position two or more new
points with only an EDM. We are able to measure
only distances, not angles. Any number of new
points could be positioned by distance measure-
ments from the two control points (see Figure 2).
Each control point would be occupied by the EDM
and distances would be measured to all the new
points. Distance-distance intersections could be
used to generate coordinate values for the new
points. The points could be positioned, but there
would be no checks of their coordinate values.
Inverses could be computed between all the new
points, and angles could be computed between
the respective lines. A closed loop could even be
computed with these angles and distances, but of
course there would be no redundancy in the sys-
tem. If there were a small mistake in all the dis-
tances, such as a reflector constant entered with
the wrong sign, the mistake would not affect the
relative positioning of the new points very much.
Since the new points are clustered closely together
relative to the distant control points, the effect on
their relative positions would be minimal. If it
were known, in general, where the points were in
relation to the control points, coordinates for as
many new points as desired could be computed
from only two control points.

The generation of coordinates using GPS
phase differencing has some similarities to this
process (see Figure 3). The known control points
of the previous diagram are replaced by satellites.
The satellite coordinates are known from the
orbital information broadcast to the user in the
ephemeris. The new points of the conventional
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Figure 4. Fixing of reference station.

survey shown in Figure 2 are replaced by the new
points on the ground in the GPS survey shown in
Figure 3. Each one of the new points on the
ground is positioned by a receiver capable of
measuring distances to the satellites. For various
reasons, these distances all contain very similar,
but relatively small, errors. Again, the relative
positions of the points are not affected very much
by these errors. In the hypothetical situation
shown in Figure 3, there are only enough satel-
lites to solve a two-dimensional system with no
redundancy.

Of course, the process is similar to a distance-
distance intersection only in a general way. For a
more complete understanding, some differences
must to be considered.

Even though the receivers measure the dis-
tances from the satellites to all the new points on
the ground, not all of these measured distances
are used as final distances (see Figure 4). In order
to make the mathematical process function prop-
erly, one of the new points must be arbitrarily
chosen as a reference station and fixed to

puted from the ephemeris data for each epoch of
measurement. But even though the phase meas-
urements from the satellites to the reference sta-
tion are recorded in the receiver at that station,
the final distance between the reference station
and the satellites is simply the difference between
the satellite positions and the nominal value of
the reference station. In a sense, therefore, these
distances are not measured by carrier phase val-
ues. The remaining distances—from the satellites
to the other points on the ground—are all “meas-
ured” from carrier phase data.

The Phase Difference Solution

In reality, the only thing “measured” by the re-
ceiver is the partial phase of a cycle. In other
words, when a satellite first comes into the view of
the receiver, the receiver is capable of measuring
the portion of one whole cycle which is present at
the receiver’s antenna at the moment of
measurement.

This part of one whole cycle is measured and
stored as a real numiber less than one. For each
subsequent measurement interval (epoch), the
receiver is capable of both counting how many
whole cycles have elapsed since the last measure-
ment and measuring whatever portion of a cycle is
present at the moment of the subsequent meas-
urement. So, only the partial phase of the first
cycle is measured for the first epoch, rather than
the entire distance from the satellite to the
ground. In order to obtain the entire distance,
something has to be done to derive the whole
number of cycles from the receiver to the satellite
at the first moment of measurement.
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Figure 5. Double difference.

A variety of intricate methods have been devel-
oped to do this. Much of GPS software develop-
ment focuses on this area and tremendous strides
have been made. Until recently, the whole num-
ber of cycles to each satellite was treated first as a
parameter, along with others, in a general case
least squares adjustment where both parameters
and observations are mixed in condition equa-
tions. (This general or unified approach to least
squares adjustments is outlined in Mikhail 1976
and Mikhail and Gracie 1981.) If the parameter
solutions were close to integer values, the parame-
ters were changed to constants by simply round-
ing off to the nearest integer value and re-solving
the system with that many fewer parameters
(Leick 1990). More recent procedures use a so-
phisticated series of differencing techniques to
approximate a final solution, then test all the
possible integer combinations within a very lim-
ited range of possibilities. If a combination can be
found with significantly smaller error statistics, it
is considered correct (Allison 1991, Frei 1990,
Talbot 1992).

Once this value is computed, it is tacked onto
all the phase measurements for every epoch, and
the entire distance from the satellite to receiver
becomes a measurement, at least in effect. These
distances are the fundamental measurements of
GPS positioning. They are analogous to the fun-
damental  measurements of  conventional

surveying, horizontal angles, vertical angles, and
slope distances. Once they are derived, these
distances are differenced against the fixed dis-
tances from the satellites to the reference station
to compute the coordinate values of the other
points on the ground.

In practice, the entire distance from the re-
ceiver to each satellite is never computed and
expressed as a measurement. It is only the differ-
ences between these distances and the fixed dis-
tance to the reference station that are derived and
shown to the user via the software.

Now the difference between the process and a
distance-distance intersection becomes more
apparent. Some of the distances are fixed and the
others are considered as measured values. These
quantities become tools for determining the whole
number of cycles from the satellites to the ground
points. Once the whole number of cycles is deter-
mined for each distance, it is added to the phase
measurements and the entire quantity is used as a
measurement in determining the coordinates for
the unknown points.

Various differencing methods are used before a
final solution is reached, but the double difference
solution shown in Figure 5 illustrates the concepts
well. The solution is based fundamentally in a
solution of right triangles. The measured dis-
tances of the diagram are considered the known
hypotenuses of right triangles. The coordinates of
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the unknown position are algebraically solved
with simultaneous equations modeling the adja-
cent sides of the triangles as coordinate differ-
ences between the satellite coordinates and the
coordinates of the unknown point. The satellite
coordinates are known quantities. Coordinates of
the receiver at the unknown point are the un-
known quantities in the diagram. These are what
actually “drop out” of the solution.

In the situation shown in Figure 5, two satel-
lites and two measured distances are enough to
solve for two-dimensional coordinates. Since GPS
positioning is done in three dimensions, another
satellite is needed for three-dimensional coordi-
nates. And since the whole process occurs over a
changing time interval, another satellite is needed
for time. Thus a minimum of four satellites are
necessary. The actual process is a rather complex
solution of simultaneous equations. There is a
massive amount of data, so matrix methods are
used. Regardless of the complexity of the actual
solution, the process is not, in essence, too far
removed from the diagram of Figure 5. Looking
at the diagram, it is intuitively clear that, regard-
less of the specifics of the algebra, enough infor-
mation is available to determine coordinates for
the unknown point D with the two measured
distances BD and CD. This is actually a simultane-
ous mathematical process, but treating the process
as a sequence of mathematical events makes it
easier to understand the concepts.

Effects of Errors in the
Fixed Distances

The coordinates of any unknown points each
contain absolute positional errors resulting from
the errors in the fixed distances from the satellites
to the reference station. These errors arise from a
combination of errors both in the position of the
reference station and in the satellite positions.
The effects of these errors in the absolute posi-
tions of the unknown points have very little effect
on the relative positional accuracy of the points.
This can be visualized by a re-examination of
Figure 4.

Figure 4 is a somewhat more realistic represen-
tation of a typical geometry of points and satel-
lites than is Figure 5. The errors in the fixed
distances are normally small in relation to the
total distance to the satellites. Further, the un-
known points are clustered together in an area
which is small when compared with the area occu-
pied by satellites spread over the sky at distances
greater than 20,000 km from the unknown points.

The accuracy of the unknown points with respect
to each other is more of a function of the preci-
sion of the phase measurements rather than the
error in the fixed distance. This relative position-
ing accuracy deteriorates as the unknown points
become further apart and/or the satellites become
closer together.

Session Results Considered as
Points rather than Vectors

The above method is appropriately called relative
positioning. However, to clearly evaluate the
effects of trivial baselines on redundancy, the
positions of the points in relation to the satellites
needs to be considered, rather than the positions
of the points in relation to each other. This shifts
the focus to the measurements and away from the
three-dimensional vectors that directly express
the relative positions of the points. It is easier to
visualize this if the results of a session are thought
of only as the coordinates that “drop out” of the
solution, rather than as vectors between the
points. The results of each simultaneous session
are viewed as a set of three-dimensional coordi-
nates floating in space, rather than as intercon-
nected vectors. Each additional session produces
another set of coordinates floating in space in
relation to a different satellite geometry. If the
same point is positioned in more than one ses-
sion, more than one set of coordinates will exist
for it—a redundant session has been measured to
the point.

Some contemporary software outputs only the
coordinates of the new points to the user (Wild,
Leitz 1989). Others take the process an additional
step, computing coordinate differences between
the new points and outputting these data to the
user for input as vectors into a network adjust-
ment (Trimble Navigation 1994). This is a critical
juncture where the user can easily mislead himself
into thinking of the vectors between points as the
measurements themselves. Since they are simply
inverses between coordinate values, their effect on
redundancy has to be considered differently from
that of observations.

External and Internal
Redundancy

Unfortunately the issues regarding redundancy
are more complex. A further distinction has to be
made between the “external” redundancy
achieved from different sessions and the
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Figure 6. Distance-distance intersections with new control
points.

“internal” redundancy of any one session (Pfeifer
1982). There is a good deal of internal measure-
ment redundancy in any one session, but signifi-
cant errors and potential sources of mistakes
external to one session remain which must be
resolved by a different session. Internal redun-
dancy is illustrated by Figures 2, 6, and 7. It is
apparent from Figure 2 that even though many
points can be positioned from the two control
points, there is no redundancy in the system. One
way to achieve redundancy would be to position
the points from one or more different control
points (see Figure 6).

With the distances from the new control points,
we could compute another set of coordinates for
the new points. Since the new control points are
close to the first set of control points, the coordi-
nate values will be only slightly different from the
first values. This is also done in GPS computations
except that, instead of different control points, we
use the same satellites at a different time, so their
positions in orbit are different (See Figure 7).

Original Position & =" >4\Same Satellite
'g\ New Position
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New Position
a

New Points
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Figure 7. Distance-distance intersections from new satel-
lite positions.

This provides some redundancy within, or inter-
nal to, one particular session of measurements.

The further the satellites move from their ini-
tial positions, the more accurate the redundancy
check. As observations are taken to moving satel-
lites, each measurement epoch provides a unique
set of measurements that provide redundancy
within a particular session. Each satellite above
the minimum of four also provides redundancy.
But with typical epoch intervals of less than one
minute, the satellites have not moved very much
in their orbits from one epoch to the next. As a
result, measurements from successive epochs
contain virtually no difference in their errors, and
consequently produce only very slight differences
in coordinate values of the points. So, even
though a vector computed between two stations by
measurements from one session may contain
several hundred measurements, it is usually re-
duced to only one vector and considered as only
one measurement in a network. This is done even
though there are many measurements within that
one session and there is quite a bit of internal
redundancy within that one set of measurements.

This is somewhat similar to what is done in
conventional surveying when a complete set of
perhaps as many as 16 positions of an angle is
reduced to one measured angle and entered into
an adjustment as one observation, not 16. There
is obviously some internal redundancy. The angle
has been measured 16 times when only one angle
is sufficient to define the mathematical model.
But there is no redundancy that models external
factors such as instrument and target setup errors,
or perhaps, more importantly, instrument and
target setup mistakes. There is nothing to indicate
that the targets were over the correct point or that
a tribrach was not leveled, or was badly out of
adjustment. There is some canceling of errors
resulting from reading two faces, rotating the
circle, and so on, but, essentially, the process
simply refines the precision of the resultant angle
and produces a tighter set of statistics. However,
conventional methods also provide a means of
dealing with external factors since each station
occupied by a theodolite is also a target station for
subsequent sets of angles measured from back-
sight and foresight stations.

In a similar fashion and for the same reasons,
each point in a GPS network should be occupied
more than once. There is some “internal” redun-
dancy in only one session since there are more
than the minimum number of satellites and ep-
ochs. But basically the process of observing for
many epochs simply makes the integer ambigui-
ties (parameters) converge closer to integer values
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and produces a tighter covariance matrix. So,
normally, a complete set of all the measurements
of any one session is considered as only one set of
measurements for computing coordinate values of
the new points being positioned. There may a
great deal of internal redundancy from that one
session, but there is still nothing to model
receiver-setup error or mistakes. Different ses-
sions, especially if done on different days and with
different satellites are what are needed to achieve
external redundancy in the network. They pro-
vide a completely different satellite geometry and
completely different sets of measurements from
the satellites to the new points.

Loop Misclosures with
Trivial Baselines

Another issue that needs to be considered is the
closed loop that can be formed by a trivial base-
line. It is apparent from looking at Figure 2 that,
if inverses are computed between all three of the
new points and considered as measurements for a
traverse between the points, the traverse will close
perfectly. The same thing happens in a GPS ses-
sion. If all three vectors are used in a loop or
network, they will close almost perfectly and for
the same reasons. The baselines are simply in-
verses between coordinate values all generated
from the same set of distances to the satellites.
With GPS measurement the loop will not close
perfectly, although it will usually be very close. To
most surveyors, the small misclosure appears
equivalent to a traverse misclosure. It is not the
same thing.

In order to fully understand why the closing
vector is not a redundant measurement, it is im-
portant to understand the reasons behind the
small misclosure. Various factors contribute. Part
of the misclosure stems from computing vectors of
a session separately rather than computing all the
vectors of a session together. When vectors are
computed separately, the fixed distances are used
again for each vector. When all the vectors are
computed together, the fixed distances are only
used once. This is more appropriate mathemati-
cally, but not quite as practical if vectors are to be
used in a network. So, many users compute vec-
tors separately. The small differences that result
from doing this contribute towards a misclosure.
Other factors enter the picture. Sometimes the
data from different vectors of a given session are
not exactly simultaneous. Most of the observations
occur over the same period, but one vector may
have a few epochs more or less than another, so

the vectors vary slightly from what would be pro-
duced from completely simultaneous data. An-
other contributing factor relates to the reference
station. Since each of the vectors is usually com-
puted separately, different reference stations are
sometimes used. Since these may be from inde-
pendently derived pseudorange positions, each
position will have completely different amounts of
error. If the vectors are not computed from a
common reference station, the errors in the pseu-
dorange positions will contribute something to-
wards the misclosure. Occasionally, one vector
from an otherwise satisfactory session will produce
a large misclosure. Usually this is because the full
number of cycles for that particular data set are
incorrectly solved and, accordingly, the software
produces a completely spurious vector. This is
similar to what is called in conventional surveying
a blunder or mistake rather than an error in a
strict mathematical sense. Suffice it to say that if
the GPS vectors of a particular session were all
computed in relation to one reference station, and
with simultaneously observed data, then a loop
computed between the new stations of the particu-
lar session would close perfectly. Thus, even
though the small misclosure may look like a con-
ventional traverse misclosure, the differences in
closing coordinate values come from different
sources.

Why the Trivial Baseline Is Not
a Redundant Measurement

By looking at the actual measured values to the
satellites rather than at the vectors between the
points, it can be seen why a trivial vector does not
provide redundancy. With receivers simultane-
ously occupying three points, three unique sets of
measurements are collected from the satellites to
the points. These three sets of measurements can
be used in differing combinations to compute a
total of three inverses between the points. If one
station is arbitrarily fixed to known values, then
all the distances between that station and the
satellites become fixed distances. The remaining
distances measured at the two other points are
used to compute an inverse, first between the
fixed station and one point, then between the
fixed station and the remaining point. Now all the
actual measurements between the satellites and
the ground points have been “used up.” A third
vector can be computed by fixing another station
as a reference and using previously used distances
to compute the final vector. But the third vector is
computed from distances that have already been
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Figure 8. Dependent and independent baselines with differing numbers of receivers.

used to compute the other two vectors, so there is
no redundancy from the third vector. It may be
convenient to have all three computed in order to
have all the possible choices available from the
session, but one of the three should ultimately be
discarded. Including it in an adjustment is tanta-
mount to entering the same measurement again.
It would be somewhat like entering the same
angle or distance twice in an adjustment of a set of
conventional observations.

Statistical Effects of Including
a Trivial Baseline

Since the measured distances to the satellites are
not directly entered twice, entering a trivial base-
line is not quite the same as doubling a measure-
ment. It does vary the relative coordinate values
of the points of a given session because the adjust-
ment process “thinks” the dependent vector is a
redundant measurement. It also gives more
weight to the vectors of a given session in relation
to the other sessions of the network. The final
baseline precisions are made to look better than
they otherwise would by a smaller variance factor.
Most network software contains a feature for mul-
tiplying a variance factor back into the a posteri-
ori cofactor matrix. This normally should be done
since GPS measurements usually do not have
realistic a priori weights. Without realistic a priori
weights, the variance factor becomes the only way
of relating the statistical analysis of the network to
the actual residuals of the observations. The vari-
ance factor is a fraction which could be thought of
as the variance of the entire network. The

numerator is a weighted sum of the residuals
squared, and the denominator is the number of
degrees of freedom in the network. Adding de-
pendent vectors distorts the variance factor. Each
dependent vector adds three degrees of freedom
to the network and consequently adds the number
three to the denominator of the variance factor.
Meanwhile, the numerator is only increased by
the square of the weighted residuals of the vector.
This is normally a very small number, less than
one. So the numerator is only increased slightly,
the denominator is increased by three, and the
resulting quotient becomes a smaller value. As
more dependent vectors are added, the quotient
becomes even smaller. This is then multiplied into
the a posteriori cofactor matrix to convert it into a
covariance matrix which is then used to compute
baseline precisions (Mikhail and Gracie 1981).
With a smaller variance factor, the values in the
covariance matrix become smaller. The smaller
variances make the baseline ppm values look
better than they otherwise would. The effects are
relatively small with only three receivers but in-
crease greatly with additional receivers.

The ratio of dependent to independent vectors
increases rapidly with each additional receiver.
With three receivers, there is only one trivial base-
line with two independent baselines. With four
receivers, three independent vectors can be com-
puted and three trivial vectors. With five receivers,
four independent vectors result and six trivial can
be produced. There is always one less usable vec-
tor from any session than the number of receivers.
With five receivers there are four usable vectors.
With ten receivers, there are nine vectors. We can
pick and choose between all the vectors that can
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Figure 9. Single session connection of a point to a network.

be computed from any one session to decide
which ones we want to use as independent vectors,
but the total number cannot be more than one
less than the total number of receivers used in the
session, and none of them can form a closed loop.

Figure 8 contains diagrams of observing ses-
sions with differing numbers of receivers.

Choice of Independent Vectors
and Effects on Point Redundancy

Putting together a network of three-dimensional
coordinate differences requires a judicious evalua-
tion of which vectors are considered independent
and which dependent, or some of the points will
be inadvertently positioned without a redundant
session. Surprisingly, it makes no difference which
vectors of a particular session are considered
independent and which dependent. This is often
misunderstood, and favoring certain choices over
others can give an appearance of redundancy
where none is actually present. In the final analy-
sis, every individual point has to be positioned by
vectors from at least two separate sessions, or
there is no external redundancy for that particular
point.

Consider the example illustrated in Figure 9:
The three points 1, 2 and 3 were all positioned
simultaneously during the third observing session
of the 271st day of the year (271-3). Any two base-
lines between the three points can be considered
as independent. Most conventional surveyors
would prefer the choice on the left because it
appears to be more like a closed traverse through
point 2. But, in practice, positioning point two by
drawing the connecting vectors as shown on the
left is no better than connecting them as shown on
the right. Either way, there is no redundant

session at point two. The situation is equivalent to
conventional positioning of a geodetic network
point by a sideshot rather than including it within
a network or as a traverse point. The most signifi-
cant danger of this method is the possibility of an
undetected blunder in measuring the antenna
height or of not centering carefully over the
point. Further, any biases caused by ionospheric
variations, orbital errors or anything else, would
go undetected. In order to achieve the necessary
redundancy, point 2 must be connected to the
network by vectors from at least two different
sessions. (See Figure 10.)

It is usually easier to visualize these concepts by
considering any points positioned from a given
session as coordinates floating in space rather
than as connected vectors between the points. It is
then more obvious which points are positioned
with a redundant session and which are not. Re-
gardless of the intellectual approach used, each
point in a network, whether an interior point or a
point on the outside border of the network, must
be positioned from at least two sessions, or there
i1s not adequate redundancy of the coordinate
values of that point. If thought of in terms of
baseline vectors, then each point must be con-
nected by vectors from at least two different
sessions.

Closing Commentary

GPS methods are deceptively similar to conven-
tional methods, and the similarities cause confu-
sion about how to achieve redundancy with GPS.
Since GPS vectors are considered observations in
network adjustments, it is easy to jump to the
conclusion that they are in fact, observations. So
computing a dependent vector as a “closing line”
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Figure 10. Multiple session connection of a point to a network.

is an appealing way to attempt to achieve redun-
dancy. However, in order to achieve full redun-
dancy with GPS methods, the actual observations
have to be considered, not the computed vectors.
The computation of a dependent vector does not
involve any more observed distances to the satel-
lites than does the computation of only the inde-
pendent vectors, so no redundancy is effected by
dependent vectors.

For a long time surveyors have used conven-
tional methods to produce coordinate values for
unknown points. Naturally, when a new technol-
ogy comes along which enables them to produce
coordinate values more cheaply and easily, they
are going to invest in it and put it to good use.
GPS seems to be simply another marvel from the
same fountain of technology that has produced
electronic handheld calculators, computers, elec-
tronic distance-measuring equipment, electronic
theodolites, and so forth. However, the mathe-
matical underpinnings of GPS positioning are
fundamentally different from those of conven-
tional surveying.

Changing from a total station and conventional
methods to GPS methods is not simply another
step in the evolution of surveying technology.
Some analogies can be made which bridge the
gap between the two areas; however, the mathe-
matics of GPS positioning need to be properly
understood before the method can be fully ex-
ploited and safely applied. Mathematical intuition
is a function of mathematical background. The
intuitive leap that enables a person to “see” how
to compute coordinates from conventional meas-
urements will not necessarily serve to make the
same leap with GPS methods.
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